7 =

==

23

22 I =,
22 =
sz 2

2c

~ =

e-Science moi omii-uk
Institute I

Developing Data-Intensive

Applications for Heterogeneous
Distributed Platforms

Shantenu Jha

SAGA: C Miceli, M Miceli, A Merzky S Sehgal, M Erdelyim, K Stamou
DIC: Dan Katz (Univ of Chicago), Jon Weissman (Univ of Minnesotq)

hitp://saga.cct.lsu.edu




=

O T | .
CENTER FOR COMPUTATION U I I I e
& TECHNOLOGY

The Case for Distributed DI Application

Critical Perspective on Distributed Application Development
IDEAS: First principles design objectives for Distributed App

SAGA — Promoting IDEAS

SAGA-based Applications
 Four Applications
« How IDEAS are met for these applications
« Increasing in irregularity/structure
« Understanding the landscape through examples
« Aim: To show the kind of questions that need asking

: O,
e-Science @ « mii Omiruic

Institute



i
LSU

CENTER FOR COMPUTATION
& TECHNOLOGY

Case for Developing Extensible DDIA

O Data inherently distributed

Distributed DIA, not just the simple sum of DIA concerns

O Multiple, Heterogeneous Infrastructure

Decouple Application Development from underlying infrastructure
« Scale-out (and not just Scale-up)
Interoperation, e.g., concurrently cross Grid-Clouds

O Support Runtime or Application Characteristics for multiple
applications and different infrastructure

e-Science
Institute

Support Multiple Programming Models

« Master-Worker, but Irregular versus Regular Workload
Support Application-Level Patterns

«  MapReduce, File-based versus Stream-based
Support Distributed Affinities




Distributed Data Intensive Applications

Research Challenges

O Goal: Develop DDI scientific applications to utilize a broad
range of distributed systems, without vendor lock-in, or
disruption, yet with the flexibility and performance that
scientific applications demand.

 Frameworks as possible solutions

O Frameworks address some primary challenges in developing
Distributed DI Applications

« Coordination of distributed data & computing
« Runtime (Dynamic) scheduling, placement
« Fault-tolerance

O Many Challenges in developing such Frameworks:

« What are the componentse How are they couplede
Functionality expressed/exposede Coordination?

« Layering, Ordering, Encapsulations of Components
Nor) oo omii-uk
e'SCIenCG \ - ml www.omii.ac.uk

Institute

AN



i
LSU

CENTER FOR COMPUTATION
& TECHNOLOGY

Distributed Applications

Critical Perspectives

O Details at; hitp://arid2009.org/bestpaper

O Ability to develop simple, novel or effective distributed
applications lags behind other aspects of Cl

« Distributed ClI: Is the whole > than the sum of the partse

O Infrastructure capabillifies (fools, programming systems) and
policy determine applications, type development & execution:

« Proportion of App. that utilize multiple distributed sites sequentially,
concurrently or asynchronously is low

« Nof referring to tightly-coupled across multiple-sites
 Focus on extending legacy, static execution models
« Scale-Out of Simulationse Compute where the data is¢

O What novel applications & science has Distributed ClI fostered

« Distinguish challenges of provisioning Distributed CI versus support
for application development



Critical Perspectives

=

e

23 p=

B8S -
g =
PEN -

g&

Q3

Quick Analysis

O Several Factors responsible for perceived & actual lack of DA
« Developing Distributed Applications is fundamentally hard!
« Coordination across multiple distinct resources
 Range of tools, prog. systems and environments large
« Interoperability and extensibility become difficult
« Commonly accepted abstractions not available
« E.g. Pilot-Job powerful, but no “unifying” tool on TG

« Deployment and execution capabilities disjoint from the
development concerns/process

« Generally good idea, but application development often
influences where and how it can be deployed/executed

: O,
e-Science @ « mii Omiruic

Institute



Understanding Distributed Applications

IDEAS: First Principles Development Objectives

O Interoperability: Ability o work across multiple distributed
resources

O Distributed Scale-Out: The ability to utilize multiple distributed
resources concurrently

O Extensibility: Support new patterns/abstractions, different
programming systems, functionality & Infrastructure

O Adaptivity: Response to fluctuations in dynamic resource and
availability of dynamic data

O Simplicity: Accommodate above distributed concerns at
different levels easily...

Challenge: How to develop DA effectively and efficiently with
the above as first-class objectivese

e-Science @ mll omii- uk

Institute



£

i Interoperabilty: Motivation

P
LSU

CENTER FOR COMPUTATION
& TECHNOLOGY

Initial Interoperability Focus

App 1 App 2 App 3
Query Engine 1 Query Engine 2
Thrift, ...

Hbase Cassandra Hypertable
Thrift, ...
Hadoop Sector ?

Decouple from vertical stack
Decouple from details of resource provisioning
Couple horizontal stacks



’VH

|

il
LU SAGA: In a nutshell

CENTER FOR COMPUTA
& TECHNOLOGY

O There exists a lack of Programmatic approaches that:

* Provide general-purpose, basic &common grid functionality for
opplic?frions and thus hide underlying complexity, varying
semantics..

« The building blocks upon which to construct “consistent” higher-
levels of functionality and abstractions

 Meets the need for a Broad Spectrum of Application:

« Simple scripts, Gateways, Smart Applications and Production
Grade Tooling, Workflow...

O Simple, infegrated, stable, uniform and high-level interface
« Simple and Stable: 80:20 restricted scope and Standard
« Infegrated: Similar semantics & style across
« Uniform: Same interface for different distributed systems

O SAGA: Provides Application* developers with units required to
copnpose high-level functionality across (distinct) distributed
systems

(*) One Person’s Application is another Person’s Tool



=

==

2= =\
25 m) )
5§=

Q5

SAGA: In a thousand words..

-~ y

o[ [ o | R E

File Job . Replica . o CPR
Adaptors Adaptors Adaptors Adaptors

" ‘ Middleware / Services '




i

LSU

S SAGA C++ quick tour

O Open Source - released under the Boost Software License 1.0

O Implemented as a set of libraries

« SAGA Core - A light-weight engine / runtime that dispatches calls
from the API to the appropriate middle-ware adaptors

SAGA functional packages - Groups of API calls for: jobs, files, service
discovery, advert services, RPC, replicas, CPR, ... (extensible)

« SAGA language wrappers - Thin Python and C layers on top of the
native C++ API

« SAGA middleware adaptors - Take care of the API call execution on
the middleware

O Can be configured / packaged to suit your individual needs!

e-Science @ « mii Omiruic

Institute



£

i

—
LSU

CENTER FOR COMPUTA
& TECHNOLOGY

SAGA Implementation: Extensibility

O Horizontal Extensibility — APl Packages
« Current packages:

« file management, job management, remote procedure
calls, replica management, data streaming

« Steering, information services, checkpoint...

O Vertical Extensibility — Middleware Bindings
« Different adaptors for different middleware
« Set of ‘local’ adaptors

O Extensibility for Optimization and Features
« Bulk optimization, modular design

; (@)
e-Science @ mi

Institute

omii-uk
.omii.ac.uk



SAGA: Available Adaptors

O Job Adaptors

* Fork (localhost), SSH, Condor, Globus GRAM2, OMIl GridSAM,
Amazon EC2, Platform LSF

O File Adaptors

« Local FS, Globus GridFTP, Hadoop Distributed Filesystem (HDFS),
CloudStore KFS, OpenCloud Sector-Sphere

O Replica Adaptors
« PostgreSQL/SQLite3, Globus RLS

O Advert Adaptors
« PostgreSQL/SQLite3, Hadoop H-Base, Hypertable

e-Science @
Institute

omii-uk
.omii.ac.uk

O,
| PR



=

==

"’Or

2z in =\
£ )=
cg

g

Q5

Development

SAGA and Distributed Applications

Distributed Appllcatlons

‘ SAGA \

uoin}oex3g

pue
juawhojdaqg



i
LSU

CENTER FOR COMPUTATION
& TECHNOLOGY

AF

SAGA-based frameworks:

Logical ordering

Distributed Data Intensive Applications

) ) ~ »
2.0. FParticle Pnysics, Astronomy, E

Programming Abstractions/Patterns/Higher-level APIs
e.g. MapReduce, All-Pairs, Scatter-Gather

Common Runtime Support
e.g. Affinity, Fault Tolerance, Patterns

Physical Infrastructure
e.g. TeraGrid/XD, Clouds, Future Data Systems

RF



&

Lag

=\

7

LSU

SAGA-based Applications: Examples

& TECHNOLOGY

O SAGA NxM Framework (All-Pairs)
« Compute Matrix Elements, each is a Task
« All-to-All Sequence comparison
« Control the distribution of Tasks and Data
» Data-locality optimization via external (runtime) module

O SAGA MapReduce Framework:
« Control the distribution of Tasks (workers)
*  Master-Worker: File-Based &/or Stream-Based
« Data-locality optimization using SAGA's replica API

O SAGA-based Sphere (Stream based processing)

O SAGA-based DAG Execution
« Extend to support Load-balancing and dynamic decision/placement & scheduling

O Applications ordered from more to less regular
« All-Pairs very structured C, D
-  DAG-based applications can be very irregular
; (= M.
e-Science Nor) mii omii-uk

> www.omii.ac.uk
Institute



=
g

23 p=

o] -
ooc =
5%

Q5

SAGA-based All-Pairs

O We use a SAGA-based All-Pairs abstraction

« Applies an operation on the input data-set such that every
possible pair in the set is input to the operation

« Degrees of freedom: Data assignment, Distribution

O Our application compares ‘genome’ (files) that consist of
random combinations of ACGT

« Other Examples: AP for Image Similarity (Biometrics) [D Thain]

O The application spawns (distributed) jobs fo run sets of these
pairs

« Determining which pairs to put intfo a set, and on which
distributed resource to run that set

« Data distribution vs. computation
« Data distribution/transfer times relevant

omii-uk
.omii.ac.uk

20
%

e-Science @ «
Institute ‘



SAGA-based All-Pairs

=
g

23 p=

o] -
ge =
PEN -

g

Q5

Multiple-levels of “control”

O Initial Data Condition:
« Data maybe distributed across resources, possibly localized

O Work Decomposition:

« Granularity of work-load,

« 8x8 matrix (=64 matrix elements): workload unit 42 162 64¢
« Workload to worker mapping

* For a fixed data set size, this is equal to number of workers
« Worker placement

« Alllocale All distributed?

/O saturatione Compute-bounde Network effectse

O Stage at which workload to workers binding takes place

e-Science @ mll omii- uk

Institute



&

Lag

=\

7
LSU
CENTER FOR COMPUTATION
& TECHNOLOGY
e-Science

Institute

DDIA: Some questions

SAGA-based All-Pairs

We want to understand:

« Performance sensitivity to data decomposition, workload granularity and
distribution

Which infrastructure to use, for specific problem (data access patterns), orin
general for a given application?

+ Performance tradeoffs of a DFS compared to “regular” distribution
*  Examine sensitivity to placement techniques

Why DFS?
« Abstract layer between application and local file systems
« Simplified Handling Data
Handles data distribution (management)
Provides replication and other capabilities
« Some examples include
« HDFS - Hadoop's filesystem, GFS

«  CloudStore an open-source high performance DFS based on Google's
distributed filesystem GFS.

« Common to load DFS as part of VM/Image
« Multiple (Open-Source) now available; generally more reliable now

Nor) moii omii-uk

www.omii.ac.uk



To DFS, or not to DFS?

O Pros

« Handles data distribution (management)
« Provides Replication

« Fault tolerance

« Capability to handle data dependencies

O Cons
« Overhead
« |Inability fo control work placement
« They all work differently. Not easy to understand performance!

O Performance:
« Performance advantage of a DFS? What constraints?
« Customize a DFS for further performance advantage?

: (= N,
e-Science < mii omii- uk

Institute



LSU

T Distributed Data — Base Line tests

& TECHNOLOGY

Workload: 2.3GB

Each file 287MB, thus 8x8

matrix. 000 [yt
[ C1 - [287 MB: E(Y. Y): Local: GridFTP]
[ C2 - [287 MB: E(Y.N). P(N.Y): Local; GridFTP]
n COﬂﬂgUI’OﬂOﬂS' 7000 F C3 - [287 MB: E(Y.Y).P(Y.Y): Local; GridFTP]
« CI1 =Locdl 6000 |
« C2=ConRIl;DonR2 w0 b
« C3=ConRl1,R2 DonR1,R2 % ;
é 4000
Time curves down, as N, up E ok
Adding workers eventually 2000 %
becomes ineffective 1000 |
« Coordination costs dominate ;
0 0 | 2 3 4 5 6 7 8
O Accessing Remote datais Number of workers
expensive
! (= .
e-Science < mil omii- uk

Institute



LSU

e Distributed Model (Intelligent)

& TECHNOLOGY

O Workload 2.3GB
Each file 287MB; thus 8x8 matrix

O Configurations:
« C4=C3+Intelligence

O Verysimple Intelligence: assign
tasks upon lowest transfer time

O Intelligence Overhead negligible

* Implementing Intelligence ~1%
time

O Different file sizes
« Scales similarly

O Scale out to > 2 resources (4)

e-Science
Institute

Time (Seconds)

8000

7000

C4-

6000 [

5000

4000

3000

2000

1000 |

C1-[287 MB: P(Y.Y),O(N, N): Local; GridFTP]
C2-[287 MB: P(Y,N), O(N. Y): Local; GridFTP]
C3-[287 MB: P(Y.Y),O(Y.Y): Local; GridFTP]
Intelligence - [287 MB; P(Y, Y), O(Y, Y); Local; GridFTP]

: O,
- My

0 | 2 3 4 5 6 7 8
Number of workers
Number of Workers
omii-uk

www.omii.ac.uk



Objective: Intelligent Compute-Data

=

g

= O
EZml)ﬂi)r
Z9 .
S E

g&

Q3

Plaocement

O Objective: Inteligence in Compute-Data placement

O Strategies:
« Assignment of workers (statically) determined by lowest T, fer
« Simple network measures (ping, throughput etc.) for T, o cer
« Data pre-staging
 Load-balancing (where easy to predict data requirement)
« Assignment of workers , by minimizing data amount transferred
 Placement of workers, based upon tracked dependencies

For a given objective, which strategy?e Each strategy could
have different mechanism used to implement...

: (= N,
e-Science < mii omii- uk

Institute



S Results: DFS (CloudStore)

& TECHNOLOGY

CloudsStore Distributed Filesystem

O Read 2.3 gigabytes

2000
O No coordination 1800
1600
O Handled mulfiple 1400
reques’rs T 1200 Local Distributed
5 Filesystem
§ 1000 2 Dataservers (r = 2)
O Some overhead for o -
multiple dataservers = 2 Datasenvers (r=1)
C 600
Remote Filesystem
in filesystem LN
200 \
O I T T
] 2 3 4
Number of Workers
; O, ..
e-Science W a mﬂqﬁ‘!ﬁlfk
Institute m"



i
LSU

CENTER FOR COMPUTATION
& TECHNOLOGY

AF

SAGA-based frameworks:

Logical ordering

Distributed Data Intensive Applications

) ) ~ »
2.0. FParticle Pnysics, Astronomy, E

Programming Abstractions/Patterns/Higher-level APIs
e.g. MapReduce, All-Pairs, Scatter-Gather

Common Runtime Support
e.g. Affinity, Fault Tolerance, Patterns

Physical Infrastructure
e.g. TeraGrid/XD, Clouds, Future Data Systems

RF



L SAGA-MapReduce

CENTER FOR COMPUTATION
& TECHNOLOGY

(GSOC'08 Miceli, Jha et al CCGrid’09; Merzky, Jha GPC'09)

« Interoperability: Use multiple infrastructure concurrently

« Control the N, placement
« Dynamic resource Allocation: *Map” phase different from “Reduce”
« Distribution of data

Number-of-Workers Size T
TG AWS  Eucalyptus (MB) (sec)

- ] ] 10 1.5

- 2 2 10 1.9

T.: Time-to-solution, including data- - I I 100 2.9
staging for SAGA-MapReduce - 2 2 100 3.0
(simple file-based mechanism) 1 - l 10 1.4
] - ] 100 3.0

2 2 - 10 1.5

3 3 - 10 1.6

4 4 - 10 2.1

5 5 - 10 3.8




7
CENTER FOR COMPUTATION
& TECHNOLOGY

SAGA-MapReduce

(GSOC'08 Miceli, Jha et al CCGrid’09; Merzky, Jha GPC'09)

Controlling Relative Compute-Data Placement

e-Science
Institute

Configuration data size  work-load/worker T
compute data (GB) (GB/'W) (sec)
local local-FS 1 0.1 466
distributed  local-FS 1 0.1 320
distributed DES 1 0.1 273.55
local local-FS 2 0.25 673
distributed  local-FS 2 0.25 493
distributed DFS 2 0.25 466
local local-FS 4 0.5 1083
distributed  local-FS 4 0.5 012
distributed DFS 4 0.5 848

TABLE I: Table showing T. for different configurations of compute
and data. The two compute configurations correspond to the situation
where all workers are either placed locally or workers are distributed
across two different resources. The data configurations arise when
using a single local FS or a distributed FS (KFS) with 2 data-servers.
It is evident from performance figures that an optimal value arises
when distributing both data and compute.

O,
L Mg

omii-uk

www.omii.ac.uk



Enhanced SAGA-MapReduce

(Erdelyim, Sehgal, Merzky, Jha GSoC’'09 Project)

O Ease-of-use:
« Simple, clean C++ API
« Application only needs to link to a library

« Custom input/output format support
Text-based and sequence file formats are already built-in

O Feature highlights:

« Infrastructure-independent support for the
MapReduce programming model

* Native C++ library, no need to use wrappers like in
case of Hadoop
« Chaining of MapReduce jobs
: Nor) oo' omii-uk
e-Science mll wwew.omilac.uk

Institute



i
LSU

CENTER FOR COMPUTATION
& TECHNOLOGY

Enhanced SAGA-MapReduce

(GSOC'08 Miceli, Jha et al CCGrid’09; Merzky, Jha GPC'09)

O Implementation details:

Wordcount (local
advertdb)
LocalFS

e-Science
Institute

Efficient serialization support via Google's Protocol
Buffers library

« Trivial to extend Hadoop's librecordio or Thrift

Data-locality optimization with the help of SAGA's
Replica API (soon)

Master-worker communication done through
SAGA's Advert and Streams AP|

8 workers/8

reducers(partitions) Old SAGA-MR Chunking time Enhanced SAGA-MR Workload/worker
1GB 3m16s 39s 3m15s 128M

2GB 7m43s 1m28s 6m12s 256M

4GB 14m39s 3m3s 12m51s {512M |
8GB 45m54s B6m15s 27m31s 1G

: O, .
@ g o



=

==

23 p=

o] -
52 =,
PEN -

g

25

Sphere PM: Stream Processing

O Sphere - Generalized MapReduce
« Tied closely with Sector

O Kernel — A (UDF) function that processes a single
independent segment (file) in the stream

O Kernels execute in parallel to process the entire stream
encompassing the data set

O Sphere supports the stream processing paradigm, allowing
applications to:
« Define a “kernel” function in a dynamic library (DLL)
« Upload a stream of data to the Sector file system for processing

e-Science @ { mil O
Institute



Integrating SAGA Sphere

O Support for stream processing is provided through two
adaptors: Sector and Sphere

O SAGA Sector file APl can be used to:

« Upload data sets to the Sector file system
 Upload kernel functions wrapped in UDFs to Sphere
« Download result setfs to local disk after processing

O SAGA Sphere job APl can be used to:

« Execute kernel functions on uploaded data sets
« Receive metrics on job completion times

O Authentication with the Sphere/Sector system is done
implicitly.

« Static and Dynamic authentication parameters are supported

e-Science @ mll omii- uk

Institute



=
==
28 p=
o] -
52 =,
PEN -
¥
3

O Sector — Data storage cloud designed for high speed
networks

O Currently running on OCC test-bed that utilizes 10g/s WANS

O SAGA Sector adaptor translates SAGA File Package APIs
into Sector operations

O Allows SAGA based applications to utilize the high
performance OCC test-bed for data-intensive
computations in conjunction with other DFS’s like KFS, HDFS,
GFS efc.

e-Science
Institute



ﬁ%
M
LSU
CENTER FOR COMPUTATION
& TECHNOLOGY

e-Science
Institute

m = = -

(o)

1200

1000

800

400

200

SAGA-Sphere WC

Sector FS

Wordcount - SAGA-Sphere

~&—WordCount
16 MB 32 MB 64 MB 128 MB 256 MB
Chunk Size
1200
1000
800

Data Distribution

Chunk Size (MB) 600

400 -

200

SPE Worker

m16MB
m32MB
64MB
m128MB
m256MB

llk

wuk




e-Science
Institute

Dynamic Execution of DAGSs

Problem: Given a set of resources, where 1o schedule a set
of independent/dependent DAG nodese

Goal: Decrease the makespan of the DAG i.e. Execution
time

To increase performance — data and compute placement
must be taken into consideration

Current scheduling heuristic based on:
* Priority Assignment
« Dynamic resource selection



i

LSU

T Digedag: SAGA Workflow Package

O Digedag - prototype implementation of an experimental
SAGA-based workflow package, with:

 An API for programmatically expressing workflows

« A parser for (abstract or concrete) workflow descriptions
« An (in-time workflow) planner

« A workflow enactor (using the SAGA engine)

O Use of an integrated API that allows the specification of the
node and data dependencies to be specified & removes the
need to manual (explicitly) build DAGs

O Can accept mDAG output, or Pegasus output

« C-DAG output of digedag is general purpose, and can be used
most simply without favour to say DAGman

O Move back and forth between A & C-DAG;

; (@
e-Science @ mii O

Institute



i SAGA-based DAG Execution

LSU

CENTER FOR COMPUTATION
& TECHNOLOGY

Preserving Performance

[ # | resources | middleware | walltime | std-dev. | diff to local |
1] 1 f 68.7 s 9.4s -
211 s 131.3s 87s 62.6s
311 c 155.0s 16.6s 86.3s
4 |1 f, s 80.8s 57s 21.1s
511 f, c 117.7s 17.7s 49.0s
6 |1 s, C 133.5s 32.5s 64.8s
711 f.s.c 1448s 18.3s 76.1s
81 q S 491.65s 50.6s 422095
9| e a 3542s 23.3s 285.5s

10 [ e, q s, a 363.6s 60.9s 294.0s
11 | l.g.e f.s a 409.6 s 60.9 s 3409s
12 |1 d 168.8 s° 5.3s 100.1s
11 | p d 309.7 s 41.5s 241.0s

TABLE II: Execution measurements

resources: I=local, p=Purdue, g=Queen Bee, e=aws/EC2

middleware: f=fork/SAGA, s=ssW/SAGA, a=aws/SAGA,
c=Condor/SAGA,d=Condor/DAGMan, p=Pegasus



i

LSU

S Dynamic Execution of DAG

O Communication Overhead:

« Use netperf UNIX tool to estimate data tfransfer rates between a set
of resources.

« Use this data to assign weight to DAG edges

O Priority assignments:

« Higher priority assigned to nodes that contribute most to the
communication overhead

« Example: Parent node of the DAG CP has the highest priority

O Dynamic resource Selection:
* Min{Cost(n,,r, )=tlevel(n,) +blevel(n, )}

n,, node under consideration

r,, resource from a set of given resources

flevel (n,) , the heaviest top-level path for node n, placed onr,
blevel(n,), the heaviest botfom-level path for node n, placed onrr,

e-Science @ mll omii- uk

Institute



Ensemble Kalman Filters

=

==

=3
e
] /=,
5§=

Q5

Heterogeneous Sub-Tasks

O Ensemble Kalman filters (ENKF), are recursive filters to handle
large, noisy data; use the EnKF for history matching and
reservoir characterization (Alan Sill gave a nice overview in
the last MAGIC talk)

O EnKFis a particularly interesting case of irregular, hard-to-
predict run fime characteristics:

f

i Shgol\ &ngozx Stage 3

e-Science
Institute



i

LSU

S Results: Scale-Out Performance

o Uging more machines Mean Total Wall-Clock Time To Completion
dec;regses the TTC and S - = Gtandard Brror
variation between i
experiments g 87

. Using BQP decreases the 2 3] }

TTC & variation between & § 4 I 3
i 2
experiments further S 3

. Lowest fime to completion - ' ¥ ¥ ¥ — -
achieved when using BQP R RBQP Q  RQ  ROA ROA-BQP
and all available resources Machines

Khamra & Jha, GMAC,
ICAC'09

mco' omii-uk
I' www.omii.ac.uk



&

CENTER FOR COMPUTATION
& TECHNOLOGY

[
J

Extreme Distribution: Frameworkse

History match on a |
million grid cell problem,
with a thousands of
ensemble members

The entire system will
have a few billion
degrees of freedom

This will increase the
need for scale-out,
autonomy, fault
tolerance, self healing
etfc...

i omii-uk

www.omii.ac.uk

DB: SPE10_ID.it_0.h5
Cycle: 0 Time:0

Vector
Var: PermVe:
3464,

P

—2508.

‘ 1732,

— 8660

. 3.787e-08

Max: 3464,
Min: 3.787e-08

40



;
CENTER FOR COMPUTATION
& TECHNOLOGY

Extreme Distribution: Frameworkse

SPEI0_ID.It_O.nS DB: SPE10_ID.it_O.h6
le:0  Tme0 Cycle:0 ~ Time:0

History match on a 1
million grid cell problem, &-
with a thousand
ensemble members

The entire system will
have a few billion
degrees of freedom

DB: SPE10_IDt 0.h6
Cycle: 0~ Time:0

Vector

This will increase the
need for scale-out,
autonomy, fault
tolerance, self healing
etfc...

41

www.omii.ac.uk

ii omii-uk



LSU

T Extireme Distribution: Frameworks?

& TECHNOLOGY

. History match on a |
million grid cell problem,
with a thousand
ensemble members

« The entire system will
have a few billion
degrees of freedom

. This will increase the
need for scale-out,
autonomy, fault- Y R | e
tolerance, self healing bbb ot
oto e © o b o Vo o b

42
oo' omii-uk
gl

www.omii.ac.uk



i
LSU
| Application | Interoperabilty | Scale-Out |  Extensibility | Adaptivity | Simplicity |
SAGA-Montage HPC-Condor-Clouds Yes FAUST - Yes
Replica-Exchange Multiple TG nodes Yes Yes Yes Yes
Multi-Physics Multiple HPC, Condor Yes Load-Balancing Yes Yes
Reservoir Simulation (EnKF) | Multiple TG-Condor-Cloud Yes Yes (BQP) Yes Yes
SAGA-MapReduce TG-Clouds (ECP+EC2) Yes Yes Yes (C2D) | Lower Performance

Table 3: Fresh Perspective on Distributed Applications and CyberInfrastructure

Interoperability Ability to work across multiple distributed resources

Scale-Out Ability to use multiple distributed resources concurrently

Extensibility Support new patterns/abstractions, different programming systems and Infrastructure
Adaptivity Response to fluctuations in dynamic resources and availabilty of data

Simplicity Ease of above, at different levels and without sacrificing functionality or performance



=
g

23 p=

o] -
ge =
PEN -

g

Q5

Conclusions

O Discussed SAGA-based approaches to developing and
executing distributed DIA

O Range of infrastructure & dynamic behaviour is large —
iIntrinsic (application) and extrinsic (system/resource)

« Responding can have important performance consequences

O Proposed a logical ordering for designing/developing
Frameworks
* Provides the basis with which to perform experiments to

understand performance trade-offs, configurations,
infrastructure for a broad range of applications

« Designing and Implementing such frameworks that support
IDEAS is a challenging endeavour

; (@
e-Science @ mii O

Institute



i
LSU

CENTER FOR COMPUTATION
& TECHNOLOGY

Acknowledgements

SAGA Team and DPA Team and the UK-EPSRC (UK EPSRC: DPA, OMII-UK,
OMII-UK PAL), NSF (HPCOPS, Cybertools) and LA-BOR

People:

SAGA D&D: Hartmut Kaiser, Ole Weidner, Andre Merzky, Joohyun Kim,
Lukasz Lacinski, JoaoAbecasis, Chris Miceli, Bety Rodriguez-Milla

SAGA Users: Andre Luckow, Yaakoub el-Khamra, Kate Stamou, Cybertools
(AbhinavThota, Jeff, N. Kim), OwainKkenway

Google SoC: Michael Miceli, Saurabh Sehgal, MiklosErdelyi

Collaborators and Contributors: Steve Fisher & Group, Sylvain Renaud
(JSAGA), Go Iwai & Yoshiyuki Watase (KEK)

DPA: Dan Katz, Murray Cole, Manish Parashar, Omer Rana, Jon Weissman

DIC: Dan Katz and Jon Weissman



